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ABSTRACT: In the aquatic environment, microplastic (MP;
<5 mm) is a cause of concern because of its persistence and
potential adverse effects on biota. Studies of microlitter
impacts are mostly based on virgin and spherical polymer
particles as model MP. However, in pelagic and benthic
environments, surfaces are always colonized by microorgan-
isms forming so-called biofilms. The influence of such biofilms
on the fate and potential effects of MP is not understood well.
Here, we review the physical interactions of early microbial
colonization on plastic surfaces and their reciprocal influence
on the weathering processes and vertical transport as well as
sorption and release of contaminants by MP. Possible
ecological consequences of biofilm formation on MP, such
as trophic transfer of MP particles and potential adverse effects of MP, are virtually unknown. However, evidence is accumulating
that the biofilm−plastic interactions have the capacity to influence the fate and impacts of MP by modifying the physical
properties of the particles. There is an urgent research need to better understand these interactions and increase the ecological
relevance of current laboratory testing by simulating field conditions in which microbial life is a key driver of biogeochemical
processes.

■ INTRODUCTION

In the aquatic environment, plastic litter has emerged as a
major pollution issue, because it is only slowly degradable,1,2 is
ubiquitously present in our rivers and seas,3,4 may represent a
hazard to wildlife,5 and may be a potential planetary boundary
threat.6,7 Current investigations of the fate of marine plastic
debris include various surveys that aim to develop an
understanding of its distribution from beaches and shorelines
to remote islands or the great ocean gyres,8 as well as
downward transport, from the sea surface through the water
column9 to bottom sediments.10 Also, plastic contamination in
freshwaters is currently gaining attention.11

Apart from the aesthetical issues of littering, adverse effects
on wildlife are obvious for large plastic debris, i.e., macroplastic
(>5 mm).12,13 During its residence in the environment, large
plastic debris becomes brittle and undergoes fragmentation due
to weathering forces generating so-called microplastic (MP; <5
mm).14,15 While large plastic debris may have adverse effects on
fish, birds, and other top consumers in aquatic environ-
ments,5,13 the size of the MP makes it suitable for ingestion by
smaller organisms at lower trophic levels.16 Although no studies

have so far reported any ecologically plausible adverse effects of
MP on primary consumers, we know very little about the
interactions between these particles and their potential
consumers. One of the shortcomings in our current
experimental and modeling studies of MP is the missing link
of the effects of biofilms on the particle behavior in biological,
chemical, and physical interactions. The fate and effects of MP
mainly have been investigated in laboratory experiments, using
virgin spherical particles with a uniform size distribution.
However, environmental MP is characterized by heterogeneous
sizes and shapes17,18 that change with aging.6,19 Moreover, they
are mixed with natural suspended particles that may affect
biofilm formation. These parameters should be included in
study designs to create more realistic conditions of these
mixtures and their exposure.20 Additionally, particle properties,
including those of MP (such as topography or roughness,
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surface charge, surface area, overall density, and many more),
will inevitably change when a biofilm forms on the surface.
Upon release of a plastic item to the aquatic environment, a

coating layer of inorganic and organic substances is
instantaneously formed.21 The subsequent formation of a
biofilm on its surface is likely the first interaction with ambient
biota, taking place within minutes to hours.22 Biofilms are
phylogenetically and functionally diverse communities of
bacteria, algae, protozoans, and fungi collectively termed a
microbial assemblage, biofouling community, or periphyton.
These microorganisms live in spatial proximity of each other on
any submerged surface mostly embedded in extracellular
polymeric substance (EPS).23 Life in a biofilm offers a variety
of advantages for competition and survival strategies, including
possibilities for forming stable consortia, horizontal gene
exchange, accumulation of nutrients, and protection against
toxic substances and desiccation.24

Here, we summarize the different aspects and specific future
research needs of the influence of biofilm formation on plastic
debris and its potential impact on the fate and effects of MP in
the environment. Our specific focus is the physical effect of
biofilm formation on the fate of MP and the resulting
consequences for biological interactions. We specifically
identify current gaps in our knowledge of the early interactions
of plastic and biofilm-forming microorganisms and their
reciprocal influence on weathering processes, the vertical
transport of fouling MP particles, and the potential of biofilms
to modify plastic-associated fluxes of chemicals. Biological
aspects address trophic transfer, the community structure of the
so-called “plastisphere”,25 and potential adverse effects of MP.
A detailed description of the systematic literature research by
means of the ISI Web of Science performed as a first step in
this review is provided as Supporting Information. This query
led to insufficient results (see Table S1) because of the virtual
lack of studies of the investigated topic. However, several
neighboring disciplines like material and medical science,

nanotechnology, and food technology provide valuable insights
into surface−biofilm interactions. Using the systematic
literature research and cross-referencing from these disciplines,
we propose some priority areas and important questions for
investigating the impacts that microbial colonization may have
on plastic debris in the aquatic environment.

■ BIOFILMS ON PLASTIC SURFACES AND THEIR
PHYSICOCHEMICAL IMPLICATIONS

Attachment to New Habitable Surfaces. To elucidate
the complex interactions between biofilm-forming micro-
organisms and surfaces available for colonization, we need to
understand the attachment processes acting on macro- and
microplastic (Figure 1, “attachment”). Within seconds of the
first contact between ambient water and a virgin surface, a
conditioning layer or film of organic and inorganic substances is
formed by adsorption.21 Microorganisms come into contact
with surfaces by repulsive and attractive interactions among the
surface, their cell wall, and the medium. The initial conditioning
film may have the capacity to govern the colonizing community
by modifying the material-specific surface properties.26−29 The
phenomenon of sorbed molecules driving the behavior of
particles in fluids was just recently compared to the
absorbsome30 and the so-called eco-corona31 of nanomaterials
in a review by Galloway et al.7 A key point of these concepts is
the rapid establishment of a coating layer consisting of proteins
and other biomolecules around nanoparticles in biological
fluids such as serum and cytoplasm that affects the
physicochemical interaction of the nanomaterials with cells
and tissues.7 Lorite et al.32 concluded that the chemical nature
of the aforementioned conditioning film appears to be more
relevant for settlement of organisms than surface roughness or
hydrophobicity of the initial substrate surface, which highlights
the importance of this very first sorption process. The
investigation of the conditioning film on MP and its close
link to the concept of the eco-corona seems to be a promising

Figure 1. Key processes of the fate and potential effects of MP in the aquatic environment that are modified by biofilm formation. Biofilms on
submerged surfaces are the result of selective attachment of microorganisms, facilitation, and interspecific competition in the microbial communities.
Weathering processes may favor biofilm growth because of increased surface areas available for settling, which in turn may shield plastic debris from
ultraviolet light. However, biofilms have the capacity to biodegrade the polymer. In addition, vertical transport and the uptake and release of plastic-
associated chemicals are influenced by biofilm formation on plastic debris. Biological implications of biofilm formation include effects on trophic
transfer of MP and associated contaminants, community structure of microbial assemblages, and potential toxicity to grazers.
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field for future research. The universal mechanism of surfaces
absorbing molecules may have far-reaching biological con-
sequences because it is the particle’s “biologically relevant
entity”.33

From a material perspective, the surface roughness,34

topography,35 surface free energy,36 surface charge, electrostatic
interactions,37,38 and surface hydrophobicity39 are generally
known to be relevant parameters for the attachment process.
However, Hook et al.40 concluded that on the basis of their
experiments wettability (or analogously surface hydrophobic-
ity) and polymer topography did not affect the attachment of
bacteria to synthetic polymer substrates. On the contrary, Sanni
et al.41 suggested a strong correlation of bacterial settlement
and a parameter combining hydrophobicity and molecular
flexibility in the specific case of poly(meth)acrylates.
Observing colonization of submerged plastic bags, Nauen-

dorf et al.42 suggested that surface wettability was probably of
minor importance for bacterial attachment compared to surface
roughness. Comparative investigations of biofilm succession on
polymeric materials and other substrates suggest that the
abundance of bacteria on hydrophilic stainless steel, hydro-
phobic polyvinyl chloride (PVC), and polyethylene (PE) was
similar after colonization for 167 days.43 Although often termed
“inert”, synthetic polymers exhibit important differences
compared to other materials because the amount and
composition of additives (chemicals that are intentionally
added during manufacturing to improve the material’s perform-
ance) in the polymer can also affect the species composition of
organisms colonizing the surface.44 In contrast to the work of
Pedersen,43 that of Rogers et al.45 detected higher bacterial
numbers on PE and PVC than on stainless steel during biofilm
formation, which they attributed to leaching of additives as a
potential nutrient source. Although of high value for our
current understanding of biofilms colonizing MP, ongoing
research is often observation-based46−48 rather than mechanis-
tically driven. However, understanding of the underlying
mechanisms for eco-corona and biofilm formation and
composition is crucial for predicting the behavior and fate of
MP in various environmental settings. In summary, plastic
materials represent a relatively recent anthropogenic substrate
in aquatic ecosystems that can readily be colonized by biofilm-
forming organisms. Although many studies have shown that
microorganisms attach more rapidly to hydrophobic, nonpolar
surfaces (such as plastics) than to hydrophilic surfaces (such as
stainless steel),23 general conclusions about the relative
importance of specific mechanisms are difficult to draw,
particularly for in situ studies. Even in controlled laboratory
experiments, physicochemical properties differ between poly-
mer types with varying monomer subunits and copolymers,
differing by functional groups and additives. Plastic may also be
manufactured as a composite material, further widening the
range of (surface) properties. The effects of physicochemical
properties driving the early attachment processes have
comprehensively been reviewed by Renner and Weibel38 and
Cazzaniga et al.49

In response to diverse habitats and ecological requirements,
microorganisms have evolved a plethora of attachment
mechanisms.50 Organism−substrate interactions have led to
numerous adaptation strategies; for example, surface charge51

and hydrophobicity of the cell walls and membranes can be
adjusted52 by forming surface structures, such as pili, curli,
fimbriae,53,54 and flagella,55 and by regulating EPS produc-
tion,56 all of which may improve adhesion to a habitable

surface. Once the coating and the first colonists of a biofilm are
in place, the initial surface properties of the material are
modified, which may facilitate colonization for other organisms,
as demonstrated by Lobelle and Cunliffe,57 who observed a
decrease in surface hydrophobicity on submerged PE during a 3
week incubation in sea water. Additionally, environmental
factors such as ionic strength, temperature, and pH may
influence the attachment.58

Although the early formation of a biofilm on surfaces has
been under scientific investigation for decades,22,59,60 general
conclusions about the underlying physicochemical processes
governing early attachment of microorganisms are difficult to
draw because a plethora of materials and organisms with
different properties exists. As a result of the interactions
between substrates and organisms mentioned above, a diverse
microbial community colonizes every submerged surface.

Weathering. Among others, the fate of plastic debris in the
aquatic environment is governed by weathering processes
because these have significant consequences for the condition
of the material and its hydrodynamic behavior61 (Figure 1,
“weathering”). Weathering describes the loss of the physical
integrity of the material by abiotic and biotic influencing factors
and related degradation of the material. For plastic debris, we
need to consider several pathways separately, although they
usually act in concert. Preceding the biological attack,
photooxidation is the most common abiotic degradation
pathway, at least for debris exposed to sunlight. Photooxidation
may be divided into three main steps: initiation [polymer-chain
scission induced by ultraviolet (UV) light and formation of free
radicals], propagation (autoxidation), and termination (for-
mation of inert products). The degradation mainly acts on the
material surface that is exposed to UV light. As a result, the
weathered surfaces may display a modified topography, an
increase in surface roughness, and changed chemistry (e.g.,
becoming more polar because of the formation of carbonyl
groups).62−65 These processes may favour the adhesion of
microorganisms,23 carrying capacity of MP toward biofilm mass
and, ultimately, the composition and structure of the microbial
communities.35,49 In addition, successive fragmentation into
smaller particles14,66 with a high surface-to-volume ratio is an
important prerequisite for biodegradation. Over time, the
surface area of plastic available for colonization by microbes
increases,67 escalating the contribution of biodegradation,
changing the particle density, buoyancy, and sinking rate.
However, biofilm formation may also influence abiotic aging
processes, e.g., by shielding the floating plastic from UV light in
the upper water layers14 or by changing a particle’s vertical
position in the water column.68,69 As a result, the exposure to
light, shear stress, oxygen, and temperature will be influenced.
In addition to the effect of physical aging caused by abiotic

factors, polymers are subject to biological degradation.25,70,71

While the term biodeterioration refers to a loss of physical
integrity, biodegradation encompasses the process of chemical
breakdown.72 Flemming24 summarized the main biofilm-related
processes acting on the aging of synthetic polymers, namely, (i)
biofouling, (ii) degradation of plasticizers, (iii) attack on the
polymer backbone, (iv) hydration, and (v) penetration of
organisms into the polymer structure (e.g., fungal hyphae).
Synthetic homopolymers containing C−C bonds in their
polymer backbone are least susceptible to biodegradation.72

During biodegradation, exoenzymes are released by the
colonizing organisms and cause the breakdown of the polymer,
finally yielding short-chain fragments, such as oligomers,
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dimers, or monomers.73 These may then pass the cell
membrane, become a carbon source, and be mineralized to
CO2, H2O, and CH4.

73 Comprehensive reviews of the
mechanisms of biological polymer degradation are provided
by Shah et al.,73 Restrepo-Floŕez et al.,44 and Gu.74

Essentially unknown are the kinetics of fragmentation and
the resulting emission of particles and their size distribution
caused by microorganisms in the environment.67 This is of
particular relevance for the fraction of plastic that sinks to the
benthos10,14 and no longer undergoes UV-driven degradation
in the euphotic zone. Thereby, high microbial activity in
eutrophic waters may increase MP loads in the sediments and
may promote its final removal by mineralization both in the
water column and in sediments, particularly when bottoms are
not hypoxic. There may be a mechanistic trade-off in the
fragmentation rate due to biofilms attenuating abiotic weath-
ering on one hand (by shielding from UV light and sinking)
and causing biological breakdown on the other (biodegrada-
tion). To overcome the current lack of quantitative estimates of
the importance of weathering processes for plastic debris,6 we
need to understand the changes in physical and chemical
properties due to biofilm formation and thereby driving forces
behind the vertical transport of MP.
Vertical Transport. From a hydrodynamic perspective,

biofilm formation on plastic debris may have substantial
implications. First, the fouling organisms may lead to an
increase in the density of the particle and a decrease in its
buoyancy.75 The smaller the particle, the faster it can reach its
critical sinking density.76,77 Since the sinking rate is a function
of particle size and density, an increase in density above that of
ambient water (1.025 g/cm3 for sea water and 1.000 g/cm3 for
fresh water) implies sedimentation68 (Figure 1, “transport”).
However, the buoyancy of particles that originally had a higher
density than water may increase as a result of biofouling,
rendering MP susceptible to upward transport. Furthermore,
during biofilm formation, MP becomes sticky because of the
EPS matrix, which promotes the formation of heteroaggregates,
including MP, microbial communities, and detritus.68 The
formation of such heteroaggregates may affect sedimentation
rates of algal blooms and associated microorganisms. For
example, Long et al.68 demonstrated that heavy and fast-sinking
diatom aggregates displayed substantially decreased sinking
rates when low-density microbeads were incorporated, whereas
sinking rates of light cryptophyte cells associated with
aggregates increased. Furthermore, possible preferential in-
gestion of MP with well-developed biofilms (see Trophic
Transfer) may promote downward transport of MP particles
incorporated into fecal pellets of zooplankton.78,79 However,
benthic sediments do not necessarily present an ultimate sink
for plastic debris. The extent of biofouling of plastic debris may
decrease because of the removal and/or digestion by benthic
animals; hence, MP may regain buoyancy, leading to
submerging−resurfacing cycles80 (Figure 1, “transport”).
In a recent modeling study of riverine transport of MP,

Besseling et al.81 concluded that biofilm modeled as a 0.4 μm
thick monolayer of bacterial cells (1.250 g/cm3) would
introduce no changes into the overall qualitative trends and
patterns in particle behavior. In this model, data on attachment
efficiencies of biofilm-coated MP particles were derived from
the experiments performed by Xiao and Wiesner,82 who
measured an increase in the affinity of engineered nanoparticles
for porous media in the presence of biofilms. These
experiments demonstrated the affected hydrodynamic behavior

of the investigated nanoparticles in the presence of biofilms that
may have similar consequences for transport and the ultimate
fate of MP in the aquatic environment. The growth of biofilm-
forming organisms largely depends on environmental factors,
such as light and temperature, as well as on the trophic state of
the waters.83,84 The dynamics of the transport pathways as a
function of seasonality, climate effects, and the trophic state of
aquatic systems should be addressed if we are to understand
and model the distribution of MP in different ecosystem
compartments.

Transport of Plastic-Associated Pollutants through
Biofilms. The transport of hydrophobic organic contaminants
(HOCs) between plastic debris and water may be affected by
biofilms because of its sorptive properties on one hand and its
ability to metabolize HOCs on the other85−88 (Figure 1,
“chemicals”). In addition to the additives of (recently emitted)
plastic debris mentioned above, highly persistent contaminants
may be accumulated by plastic from its immediate environment
and the plastic may subsequently transport and release them
during residence at sea.89−91 The chemical loads of these
contaminants in MP may be enriched up to 106-fold compared
to those of the surrounding sea water92 and depend on the
polymer/water partition ratios that can be approximated by the
octanol/water partition ratios (KOW).

93 Since the capacity of
synthetic polymers to sorb HOCs is highly relevant for the
environmental risk assessment of MP, we face the question of
whether thermodynamic and kinetic processes will be
influenced by biofilms, representing a superficial organic
phase consisting of water, lipids, and proteins acting as both
a potential sorptive phase94 and a barrier for diffusive uptake
and release of chemicals. Furthermore, EPS represents a diverse
biological matrix containing polysaccharides, proteins, lipids,
and other biopolymers such as humic acids,95,96 which may
contribute to the sorptive capacity of the biofilm-coated MP97

and heteroaggregates. Humic acids are known to compete for
sorptive sites and hence have the potential to attenuate the
sorption of PCBs as shown for charcoal.98 Analogous to the
partitioning of HOCs into MP, synthetic polymers, such as PE,
are frequently used in the field of environmental chemistry as
so-called passive samplers because of their high capacity for
sorbing HOCs.99 The passive samplers are intentionally
deployed in the field to sample environmental contaminants
and subsequently solvent-extracted and measured in the
laboratory. However, biofilm coatings can bias passive sampling
rates in the field by increasing the resistance for mass transfer
into and out of the polymer100 as suggested by different
sampling rates in fouled and nonfouled sampling devices.101 In
laboratory studies of the kinetics of sorption of HOCs into MP,
the influence of biofilms has largely been disregarded,90,102

despite the observed effects on kinetics in the passive samplers.
Diffusion coefficients decreased by ∼4 orders of magnitude
upon inclusion of a microbial biofilm during sorption of HOCs
to glass beads,103 which also emphasizes the importance of the
biofilm acting as a barrier.
The release of additives may even promote microbial growth

by serving as a nutrient source.72,104 A wide range of bacteria,
fungi, and algae are capable of degrading HOCs,105 which is
why they can be used, e.g., for bioremediation of surface waters
in situ or as engineered bioreactors.106,107 This demonstrates
the high relevance of biofilms for the accumulation and/or
removal via metabolization of plastic-associated chemicals,87

which may affect their bioavailability for consumers ingesting
MP. Another concern is the addition of antimicrobial agents to
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polymer materials by manufacturers to hamper microbial
settlement;108 these substances may leach and promote the
spread of resistance adaptations in microbial communities.109

In summary, sorptive processes may lead to faster uptake and
release of chemicals in MP compared to macroplastic litter due
to higher surface-to-volume ratios. At the same time, however,
colonization by microorganisms is facilitated because of the
enlarged and weathered surfaces available for colonization that
can influence the kinetics and persistence of HOCs. These two-
way interactions can influence the kinetics of uptake and release
of contaminants into and from the polymeric bulk phase
through the active microbial interface need to be considered
further to predict a more realistic scenario for risk assessment of
MP being a transport and emission source of HOCs in the
aquatic environment.

■ BIOLOGICAL EFFECTS
Community Structure. Since environmental factors and

material and organismal surface properties govern the attach-
ment of organisms, any community inhabiting a submerged
surface is a result of selection processes. Microbiologists are
currently investigating communities present on MP surfaces
and the underlying factors that determine the community
structure and succession patterns (Figure 1, “community”).
Zettler et al.25 introduced the term “plastisphere”, implying that
plastic-associated communities are distinct from the surround-
ing surface water. This assumption supports the view that
plastic is a novel ecological habitat.25,46,110,111 Studies using
high-throughput sequencing showed that bacterial assemblages
colonizing MP are taxonomically distinct and often less diverse
than those in the water column, suspended organic matter or
sediment.110,112,113 Current studies, however, often lack a
proper comparison to co-occurring natural substrates, both
polymeric (e.g., cellulose, chitin, or lignin) and mineral (e.g.,
clay). Adequate particle controls are essential in field and
experimental studies20,114 that aim to address the specific effects
of anthropogenic particles.
Although the composition of microbial communities on

plastic surfaces may largely be influenced by geographical,
spatial, and seasonal factors, an additional selection of a distinct
community by the polymer substratum may occur.115,116 Dang
et al.27 showed that the early microbial colonization is similar
on plastic and glass surfaces during the first few days of
succession. However, the lowest diatom diversity was observed
on plastic, concrete, and rubber compared to that on the
hydrophilic surface of iron plates and the seagrass Posidonia
oceanica.117 This observation indicates that plastic as a habitat
may be less favorable for some species, such as diatoms, than
other substrates. A recent study investigated the succession of
microbial assemblages on PE in coastal sediments, suggesting a
selection for specific bacterial taxa.111 By contrast, Oberbeck-
mann et al.118 concluded that the community structure on
plastic surfaces is driven by conventional marine biofilm
processes rather than selection of plastic-specific microbial
colonizers. Interestingly, a different pattern of gene expression
in microalgae grown on polypropylene and PE was
demonstrated by Lagarde et al.,75 indicating substrate-specific
adaptations. The polymer-specific gene expression of sugar-
synthesizing pathways may have important implications for the
EPS production and subsequent formation of aggregates, which
may result in a differential transport and fate of plastic
particles.75 Knowledge of the community structure and the
underlying forces driving these assemblages at each succession

stage will help us to elucidate the impact of plastic pollution on
aquatic microbial load and diversity.119 We need to integrate
community structure and functions of the microbial commun-
ities on plastic debris because microbial activity is a crucial link
between pollution as an anthropogenic pressure and the
resilience of ecosystems.

Trophic Transfer. Most studies that have investigated the
ingestion of MP by biota or transfer along artificial food chains
used spherical, virgin MP particles and ignored the presence of
biofilm under field conditions.19,120 However, biofilm was
found to facilitate trophic transfer of nanoparticles in marine
systems,121 which most likely also holds true for MP. Primary
consumers may preferentially ingest particles of higher
nutritional quality, such as MP carrying nutrient-rich
biofilms.122 This discrimination would be particularly pro-
nounced in the selective feeders, such as copepods and shrimps,
but also, at least to some extent, in passive feeders, such as
cladocerans.123−125 Biofilm may also increase the probability of
MP adhering to the filtering apparatus in filter and suspension
feeders, because neutral particles have been shown to be
captured more readily than particles with a net negative
charge.126 Grazers, such as snails or copepods, may also ingest
plastic fragments accidentally while feeding on the surface
biofilm, as indicated by feeding marks observed on field-
sampled plastic debris.127 Zooplankton can actively explore
patches of marine snow,128 suggesting that potentially larger
quantities of MP (and a broader size spectrum) incorporated
into aggregates may be consumed compared to freely dispersed
particles. Indeed, in suspension-feeding bivalves, enhanced
uptake of 100 nm polystyrene beads embedded in marine
aggregates was observed compared to that of the dispersed
virgin particles.121 Moreover, increased MP abundance may
alter sedimentation rates of algal blooms, thus affecting the food
supply for pelagic and benthic animals.68 Campos et al.129

reported nanoparticle-mediated flocculation and sedimentation
of algal food resulting in a reduced rate of feeding in Daphnia
magna under food-limiting conditions. This mechanism may
potentially affect both pelagic feeders in the mixing layer and
benthic communities because they may receive food of unusual
quality and quantity. To conclude, biofilm formation and
potential heteroaggregation may affect the uptake and
susceptibility of organisms to ingesting MP by changing the
physical properties and/or increasing the availability of MP
particles. Biofilm coating has so far been disregarded in study
designs but should be included in future studies to derive
reliable uptake and ingestion rates in a more environmentally
realistic scenario.

Toxicity and Adverse Effects. Because of their structural
role as an interface between the overlying water and the
sediments, biofilms are often used in ecotoxicology to evaluate
the effect of chemicals in aquatic ecosystems.130 In a recent
study, flow cytometry was successfully applied for the detection
of MP in ecological biofilms but no structural or toxicological
effect was reported.131 However, limited attention is paid to the
direct adverse effects of plastic debris and the associated
chemicals on the biofilms (Figure 1, “toxicity”). Potential effects
may result either directly from physical and/or mechanical
stress by the presence of solid particles (e.g., via adsorption of
particles to the cell wall) or indirectly from plastic-associated
chemicals leaching out of the polymer. Zhang et al.132 revealed
a negative effect of micrometer-sized PVC particles on the
microalgae Skeletonema costatum only for the highest and
environmentally unrealistic exposure concentration (50 mg/L).
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As they excluded shading effects by their experimental design,
both physical adsorption and aggregation might have caused
toxicity.132 The available reports on suspended algae suggest
effects of nanoplastic exposure on planktonic microalgae, such
as inhibition of photosynthesis, promotion of reactive oxygen
species,133,134 growth inhibition, and reduced chlorophyll a
content.135 Until now, the exposure scenarios applied in such
experiments were beyond being environmentally relevant and
do not distinguish between the direct and indirect effect
mechanisms. Indirect effects of plastic debris on biofilm-
forming organisms may result from leaching of HOCs to the
biofilm. The toxicity of plastic additives such as flame
retardants136 and plasticizers137,138 as well as HOCs139−141

toward microalgae was demonstrated in laboratory studies. In
addition, the ingestion of plastic covered with biofilms may
increase the dose of HOCs to consumers because of increased
capacity to carry HOCs (with biofilms acting as an additional
sorptive phase mentioned in Transport of Plastic-Associated
Pollutants through Biofilms).
Another aspect of biofilm growth on MP may be its

infectious capacity caused by its transport of pathogens.142 It is
known that even free EPS fragments, called “transparent
exopolymer particles” (TEP), facilitate the uptake of pathogens
by biota.143 MP may present an additional vector for the
dispersal of rafting communities. Plastic-associated biofilms may
cause such concerns as potentially pathogenic Vibrio spp. were
detected on floating MP.25,144−146 However, it is unclear
whether the potential for pathogen dispersal is different
between MP and natural particles and whether this route can
increase the rate of infection of consumers. In conclusion,
knowledge of the toxicity and potential adverse effects of MP
and their associated chemicals on biofilm-forming organisms
and primary consumers is currently lacking.

■ RESEARCH PRIORITIES
As biofouling of submerged surfaces is a long-standing cause for
concern in pharmacology, medical and material sciences, and
food technology,147−150 knowledge of the colonization
processes from these fields can contribute to our understanding
of the behavior of plastic in the environment and facilitate
technical approaches to studying this behavior. The formation
and succession of a biofilm on MP particles involve multilateral
processes determining the respective fate of MP in the
environment and the responses of biological systems to MP
pollution. On the basis of the literature discussed above, we
identified the following research priorities.
(1) As every submerged surface is subject to microbial

colonization, we need to better understand the basic processes
that are involved in the formation of a biofilm, with a particular
focus on biofilm−MP interactions. Following the eco-corona
concept from nanotechnology,7,33 experiments should be
designed to identify key factors that influence the phys-
icochemical behavior of MP (e.g., particle properties and
surface characteristics and/or absorbing molecules). It should
be evaluated whether these factors differ for different MP
materials and whether they are comparable to those of natural
particles of similar size. Further, experiments should consider
changes in physicochemical properties after weathering. These
investigations should be performed under different weathering
conditions like UV, temperature, or mechanical abrasion.
(2) Our understanding of the biofilm−plastic interactions for

hydrodynamic processes, such as vertical transport, needs to be
improved to parametrize predictive models of the transport and

exposure of MP particles and their associated pollutants in
aquatic systems. Thus, sinking and flocculation studies with
environmentally representative biofilm−MP complexes are
needed, on micro- and mesocosm scales.
(3) The sorption of HOCs to MP has attracted an increasing

amount of attention. However, a realistic concept accounting
for the effect of biofilm formation and its consequences for the
kinetics of chemical partitioning is still lacking, which hinders
experimental evaluations. Modeling studies in a three-phase
system (water−plastic−biofilm) should be complemented by
experimental studies.
(4) Virtually all experiments published to date about the

effects of MP on biota lack the proper preparation of the test
particles that would simulate natural biofilm coating. MP coated
by biofilms (e.g., derived from preculture incubations) should
be included, and the influential characteristics of different
biological materials like bacteria, fungi, and different algal
strains should be tested. Furthermore, particle controls need to
represent natural particles similar in size, density, and biofilm
colonization.
(5) The relevance of biofilms for the mode and rate of MP

uptake by consumers should not be ignored when estimating
feeding uptake and exposure effects under realistic conditions.
Differential uptake of MP due to biofilm formation should
complement the current (ecotoxicological) research on MP
ingestion in artificial food chains.
(6) We need to understand the intricate interactions between

microbial assemblages in water and their capacity to sustain
biofilm formation on various polymer materials (“plastisphere”)
if we are to assess the resilience of aquatic systems to MP
pollution. Therefore, the investigation and analysis of biofilms
on plastic debris are encouraged so we can gain functional
insight into its productivity and diversity as well as its vector
role in carrying and dispersing microorganisms for reliable
hazard assessment.
In conclusion, the challenge for the MP research is to

account for the interactions between diverse plastic materials
undergoing weathering and colonization by microorganisms in
various environmental settings to provide a science-based risk
assessment for the effects of plastic debris in aquatic
environments.
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